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In this paper we consider the stability of the flow produced by an infinite rotating disk.
A large-Reynolds-number asymptotic theory is developed to obtain the non-parallel
correction to the local absolute instability (AI) found for this flow by Lingwood
(1995), who used the parallel-flow approximation. Our asymptotic theory is based on
the inviscid AI underlying the viscous AI and so is expected to give the non-parallel
correction to the upper branch of Lingwood’s neutral curve for the AI. It is found
that non-parallel terms have a destabilizing effect on the AI. Also, it is shown that,
although the position of the neutral curve for convective instability is known to
depend on choice of measurement quantity, for AI it does not. However, in relating
the asymptotic non-parallel results to the numerical parallel results at large Reynolds
numbers, it is found that Lingwood’s viscous AI does not, after all, asymptote towards
the inviscid results. Instead, Lingwood’s family of branch points is distinct from a
second family of branch points that do asymptote towards the inviscid limit. We
show that these two families of branch points are related by a ‘super branch point’
at which three spatial branches connect simultaneously. Lingwood’s branch points, in
fact, have a viscous long-wave origin, and will therefore be subjected to non-parallel
effects that are some power of the Reynolds number larger than if they had been of
inviscid origin.

1. Introduction
Linearized disturbances to spatially developing basic flows are described by sets of

partial differential equations, which can be relatively challenging to solve numerically.
This is especially true if, for example, the local flow characteristics display absolute
instability since then waves grow in both upstream and downstream directions, and
this behaviour then raises concerns over the nature of the upstream influence of
the downstream boundary conditions. The problem with which we concern ourselves
here, the flow produced by an infinite rotating disk, falls into this category.

However, in many spatially developing shear layers of practical interest, this
spatial development, which is a consequence of viscous diffusion, is weak, because
the Reynolds number, Re, is large. The effect of non-parallel terms, i.e. those in
the linearized disturbance equations that contain derivatives with respect to the
streamwise coordinate, on disturbance stability will be similarly weak for disturbances
with wavelengths comparable to the shear layer thickness, for example inviscidly
unstable disturbances. For such disturbances, the viscous terms, i.e. the second-
order spatial derivatives, and non-parallel terms are apparently of the same order
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of magnitude, but in fact the viscous terms make a greater contribution to the
stability characteristics of wall-bounded flows. This is because at large Reynolds
numbers their importance is increased in thin viscous wall layers where non-slip
boundary conditions apply, and this produces a corresponding increase in their effect
on the dispersion relations. Under these circumstances, it is permissible to neglect
the non-parallel terms while retaining the viscous terms. This so-called ‘parallel-flow
approximation’ has the great advantage of reducing the disturbance equations from
partial differential equations to ordinary differential equations, thus allowing relatively
quick numerical solution (provided appropriate methods are used to overcome their
considerable stiffness at numerically large Reynolds numbers).

The expediency of the parallel-flow approximation made it important in the
historical development of the theory of boundary-layer stability, and means it is still
widely used. However, the case for justifying its use is not always as straightforward
as indicated in the preceeding paragraph, and the question of determining the
quantitative, or qualitative, effect of the non-parallel terms remains important when
detailed comparisons with experiment are to be made. Non-Parallel effects become
more important the longer the wavelength of the disturbance. Long waves are
often characteristic of disturbances whose instability mechanism is viscous rather
than inviscid. If the wavelength becomes large enough, as can occur for example
with Görtler vortices, see Hall (1983), the non-parallel terms make a leading-order
contribution to the dispersion relation and the parallel-flow approximation cannot be
justified at all. Mathematically, this is because long enough waves have wavenumbers
small enough to cause the terms they multiply in the stability equations to become
comparable in size to the non-parallel terms. Physically, with long enough waves the
basic flow changes significantly over a single wavelength causing the separation of
scales between evolution of wave and evolution of basic flow to be lost, therefore
requiring both to be treated together.

It could be argued that the parallel-flow approximation ought only to be used once
the asymptotic large-Reynolds-number structure of disturbances has been established.
This would indicate whether the fundamental mechanism is a short-wave inviscid one,
or a long-wave viscous one, and thus give the order of magnitude of the non-parallel
correction. The parallel-flow approximation can then be used if this correction is
smaller than O(1). (Strictly speaking, the magnitude of the non-parallel correction
is only known as Re → ∞; at any finite value of the Reynolds number issues of
series convergence arise and one cannot be certain that there are not higher-order
non-parallel terms that dominate the solution for any specific value of the Reynolds
number. Nonetheless, we take a pragmatic approach, and assume that the Reynolds
number will be high enough for higher-order terms to be negligible). If required, the
stabilizing or destabilizing character of the non-parallel terms can then by obtained
by carrying out a perturbation expansion to high enough order in the appropriate
fractional inverse power of the Reynolds number, like Smith (1979) did for the Blasius
boundary layer.

However, within the last decade increases in computing power have meant that the
effect of non-parallel terms can be computed relatively conveniently by parabolizing
the disturbance equations, as in Bertolotti, Herbert & Spalart (1992), but this approach
could not be justified in absolutely unstable flow, since then waves propagate both
upstream and downstream. There are other numerical methods for estimating non-
parallel effects that do not depend on parabolization, like that proposed by Gaster
(1974), and a similar approach to this problem will be presented for publication in
due course. Here, however, we take the analytical approach in order to investigate the
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fundamental effects produced by non-parallel terms in the large-Reynolds-number
limit on the absolute instability of the rotating-disk boundary layer discovered by
Lingwood (1995) using the parallel-flow approximation.

It should be pointed out that there is another, perhaps ultimately more important,
question concerning the interplay between spatial inhomogeneity and local absolute
instability: that of the existence of global modes, and the properties of any such
modes, see for example the reviews by Huerre & Monkewitz (1990) and Huerre
(2000). A sufficiently spatially extended region of local absolutely unstable flow is
usually required in order to sustain an unstable linear global mode. However, the
linear global mode properties, e.g. their temporal growth rates, are based on local
stability calculations, often at locations in the complex plane of a spatial coordinate,
e.g. Soward & Jones (1983), Monkewitz, Huerre & Chomaz (1993). Therefore, the
inclusion of non-parallel corrections to the dispersion relation, and hence to the
local absolute instability calculations, allows more accurate linear global modes to
be calculated. The same considerations apply to the calculation of nonlinear global
modes. For example, the secondary absolute instability found by Pier (2003) of
nonlinear global modes in the rotating-disk boundary layer are based on parallel-flow
calculations, and while this may not affect the qualitative features of the transition
scenario described in that paper, detailed quantitative comparisons with experiments
or simulations may yet require local non-parallel corrections to be included in the
theory.

The linearized disturbance equations are derived in § 2, and far from the disk’s axis
of rotation a WKB formulation is adopted for the disturbances to make explicit the
separation of scales between wave evolution and basic flow evolution. This results
in a weakly non-parallel set of disturbance equations, with the Rayleigh equation
appearing at leading order. Lingwood (1995) also showed that there is absolute
instability in the inviscid stability problem, and conjectured that it represented the
large-Reynolds-number limit of her numerical viscous parallel-flow calculation. This
is certainly plausible since the much more studied stationary vortices that appear on
the rotating disk are known to have an inviscid origin, see Gregory, Stuart & Walker
(1955). The results of a comparison between the inviscid Rayleigh solution and
the numerical viscous parallel-flow solution for the boundary of absolute instability
is presented up to Re = 1000 (Re is defined in § 2) that appears to confirm that
the upper branch of the numerical viscous solution is asymptoting towards the
inviscid solution. This motivates the development in § 3 of a large-Reynolds-number
asymptotic expansion whose leading-order term is the neutral inviscid solution. The
coefficients in this expansion, which proceeds in powers of Re−1/2, have been computed
up to and including terms of O(Re−1) so that the effects of the first non-parallel terms
on the inviscid absolute instability can be determined.

However, a comparison between the asymptotic and numerical solutions for the
neutral curve for absolute instability, presented in § 4, reveals surprisingly poor
quantitative agreement. Nonetheless, the comparison led to the discovery of a second
family of branch points, which are in good agreement with the asymptotic theory.
The relation between the two families of branch points, and the regimes where each
represent pinch points are also presented in this section. Conclusions are given in § 5.

2. Problem formulation
An infinite disk rotates at constant angular velocity Ω∗ in an otherwise still viscous

incompressible fluid of kinematic viscosity ν∗ (in this paper all dimensional quantities
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have been given an asterisk subscript). Viscous stresses at the disk surface accelerate
fluid elements near to the disk into almost circular paths, but there is no radial
pressure gradient to counter the centrifugal forces acting on these fluid elements, and
so fluid near the disk spirals outwards. The disk thus acts as a centrifugal fan, and
the fluid thrown outwards in this way is replaced by an axial flow directed towards
the disk surface, see Batchelor (1967).

It was shown by von Kármán (1921) that this basic flow can be described by a
similarity solution. Batchelor (1951) showed that this flow is also a limiting case of a
family of flows with similarity solutions in which both the disk and the fluid far from
the disk rotate with different angular velocities. This family also includes as limiting
cases the Bödewadt (1940) layer, where the disk is stationary and the fluid rotates, and
the Ekman (1905) layer, where fluid and disk co-rotate at almost the same angular
velocity. The similarity structure persists when there is a normal flow through the
disk wall, e.g. when there is wall suction, Stuart (1954), or blowing, Kuiken (1971).
The methods described in the present paper can be applied directly to all of these
flows.

2.1. Governing equations

We choose to work in cylindrical coordinates in a frame of reference rotating with
the disk. The axial and radial coordinates are z∗ and r∗ respectively, the azimuthal
angle is θ , time is t∗ and ρ∗ is the density of the fluid. The velocities in the radial,
azimuthal and axial directions are u∗, v∗ and w∗ respectively and the pressure is p∗.
The governing equations are therefore

1

r∗

∂(r∗u∗)

∂r∗
+

1

r∗

∂v∗

∂θ
+

∂w∗

∂z∗
= 0, (2.1a)

D∗u∗ − (v∗ + Ω∗r∗)
2

r∗
= − 1

ρ∗

∂p∗

∂r∗
+ ν∗

(
L∗u∗ − u∗

r2
∗

− 2

r2
∗

∂v∗

∂θ

)
, (2.1b)

D∗v∗ +
u∗v∗

r∗
+ 2Ω∗u∗ = − 1

ρ∗r∗

∂p∗

∂θ
+ ν∗

(
L∗v∗ − v∗

r2
∗

+
2

r2
∗

∂u∗

∂θ

)
, (2.1c)

D∗w∗ = − 1

ρ∗

∂p∗

∂z∗
+ ν∗L∗w∗, (2.1d)

where the differential operators are

D∗ ≡ ∂

∂t∗
+u∗

∂

∂r∗
+

v∗

r∗

∂

∂θ
+w∗

∂

∂z∗
, L∗ ≡ 1

r∗

∂

∂r∗

(
r∗

∂

∂r∗

)
+

1

r2
∗

∂2

∂θ2
+

∂2

∂z2
∗
. (2.2a, b)

Lengths are scaled by the characteristic viscous length scale, and time by the angular
velocity of the disk:

r∗ = (ν∗/Ω∗)
1/2r, z∗ = (ν∗/Ω∗)

1/2z, t∗ = t/Ω∗. (2.3a, b, c)

Flow variables are separated into an axisymmetric steady basic flow, which respects
von Kármán’s similarity structure, and a more general unsteady part, whose amplitude
is characterized by a small parameter δ � 1:

u∗(r∗, θ, z∗, t∗) = r∗Ω∗U (z) + δ(ν∗Ω∗)
1/2û(r, θ, z, t), (2.4a)

v∗(r∗, θ, z∗, t∗) = r∗Ω∗V (z) + δ(ν∗Ω∗)
1/2v̂(r, θ, z, t), (2.4b)

w∗(r∗, θ, z∗, t∗) = (ν∗Ω∗)
1/2W (z) + δ(ν∗Ω∗)

1/2ŵ(r, θ, z, t), (2.4c)

p∗(r∗, θ, z∗, t∗) = ρ∗ν∗Ω∗P (z) + δρ∗ν∗Ω∗p̂(r, θ, z, t). (2.4d)
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2.2. Basic flow

Substituting (2.3) and (2.4) into (2.1) and equating terms of O(δ0) gives the basic flow
similarity equations

2U + W ′ = 0, (2.5a)

U 2 + WU ′ − (V + 1)2 = U ′′, (2.5b)

WV ′ + 2U (V + 1) = V ′′, (2.5c)

WW ′ = −P ′ + W ′′, (2.5d)

to be solved subject to boundary conditions

U (0) = V (0) = W (0) = 0, U (∞) = V (∞) + 1 = 0. (2.6a, b)

Here, and throughout, primes denote (sometimes partial) derivatives with respect to
z. The numerical solution of (2.5) subject to (2.6) is relatively straightforward, for
example by a shooting method where (2.6a) provides three initial conditions, with
two more initial conditions U ′(0) and V ′(0) chosen iteratively until (2.6b) has been
satisfied at a suitable large finite value of z to within some prescribed accuracy.
However, the solutions exhibit an unwanted algebraic growth as z increases which
could compromise accuracy of the basic flow solution. Instead, the asymptotic large-z
series solution of Benton (1966), based on linearizing around the uniform flow far
from the disk, has been used, see Healey (2004) for details of the implementation. The
solution found has U ′(0) = 0.510236, V ′(0) = −0.615922 and W (∞) = −0.884474.

2.3. Linearized disturbance equations

Substituting (2.3) and (2.4) into (2.1) and equating terms of O(δ) gives the linearized
disturbance equations

1

r

∂(rû)

∂r
+

1

r

∂v̂

∂θ
+

∂ŵ

∂z
= 0, (2.7a)

Dû + rU ′ŵ + Uû − 2(V + 1)v̂ = −∂p̂

∂r
+ Lû − û

r2
− 2

r2

∂v̂

∂θ
, (2.7b)

Dv̂ + rV ′ŵ + Uv̂ + 2(V + 1)û = −1

r

∂p̂

∂θ
+ Lv̂ − v̂

r2
+

2

r2

∂û

∂θ
, (2.7c)

Dŵ + W ′ŵ = −∂p̂

∂z
+ Lŵ, (2.7d)

where

D ≡ ∂

∂t
+ rU

∂

∂r
+ V

∂

∂θ
+ W

∂

∂z
, L ≡ 1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (2.8a, b)

The coefficients depend on both r and z, but not θ nor t . Therefore, Fourier series
can be taken in θ (since the flow field is periodic in θ) and Fourier transforms can be
taken in t , but the disturbance equations remain partial differential equations, with
variables depending on both r and z. Reduction to ordinary differential equations at
leading order is only possible far from the axis of rotation, and this is the limit we
shall work in.

Let R∗ be the dimensional position of interest on the disk, then a Reynolds number,
Re, can be introduced that is the ratio of R∗ to the characteristic viscous length scale:

Re = R∗

(
Ω∗

ν∗

)1/2

. (2.9)
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(Some studies have defined Re2 to be the Reynolds number, corresponding to a
Reynolds number based on length scale R∗ and local disk velocity R∗Ω∗). We now
introduce a new radial coordinate, ρ, given by

r = Re ρ (2.10)

where Re � 1 and ρ = O(1) near the position of interest. If Re α � 1, where α is the
radial wavenumber, then the radial wavelength is small compared with the distance
to the axis of rotation, and the basic flow does not vary significantly on the length
scales associated with the disturbance. This separation between the length scale of
disturbance evolution and the length scale of basic flow evolution allows a WKB
formulation to be adopted for the disturbance structure, and so we let

û(r, θ, z, t) = u(ρ, z) exp iRe

(∫
α(ρ) dρ + βθ − ωt

)
, (2.11a)

v̂(r, θ, z, t) = v(ρ, z) exp iRe

(∫
α(ρ) dρ + βθ − ωt

)
, (2.11b)

ŵ(r, θ, z, t) = w(ρ, z) exp iRe

(∫
α(ρ) dρ + βθ − ωt

)
, (2.11c)

p̂(r, θ, z, t) = Re p(ρ, z) exp iRe

(∫
α(ρ) dρ + βθ − ωt

)
, (2.11d)

where Re β is an integer and ω is the scaled angular frequency of the wave. We assume
Re β � 1 and so will neglect the discretization of β , which is the scaled azimuthal
wavenumber. Substituting (2.11) into (2.7) gives

iαu +
iβ

ρ
v + w′ = − 1

Re ρ

[
u + ρ

∂u

∂ρ

]
, (2.12a)(

iαU +
iβ

ρ
V − iω

ρ

)
u + U ′w = − iα

ρ
p +

1

Re ρ

[
u′′ − α2u − β2

ρ2
u + 2(V + 1)v

− Uu − Wu′ − ρU
∂u

∂ρ
− ∂p

∂ρ

]
+ O(Re−2), (2.12b)(

iαU +
iβ

ρ
V − iω

ρ

)
v + V ′w = − iβ

ρ2
p +

1

Re ρ

[
v′′ − α2v − β2

ρ2
v − 2(V + 1)u

− Uv − Wv′ − ρU
∂v

∂ρ

]
+ O(Re−2), (2.12c)(

iαU +
iβ

ρ
V − iω

ρ

)
w = − 1

ρ
p′ +

1

Re ρ

[
w′′ − α2w − β2

ρ2
w − W ′w

− Ww′ − U
∂w

∂ρ

]
+ O(Re−2), (2.12d)

where primes denote partial differentiation with respect to z. The boundary conditions
for solving the leading-order inviscid problem are w(ρ, 0) = w(ρ, ∞) = 0, and for the
viscous problem these are supplemented by u(ρ, 0) = v(ρ, 0) = u(ρ, ∞) = v(ρ, ∞) = 0.

The equations (2.12) show that the non-parallel terms, i.e. those involving derivatives
with respect to the radial coordinate ρ, are small when Re is large and α, β/ρ and
ω/ρ are O(1), i.e. (2.12) are only weakly non-parallel. Under these conditions, the
non-parallel terms are of the same order of magnitude as the Coriolis and streamline
curvature terms, but, as will be discussed in § 3, the viscous terms have a larger
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Figure 1. Solid line is the neutral curve for absolute instability calculated using the sixth-order
parallel-flow approximation; dashed line is the neutral inviscid value (2.13b) for absolute
instability.

effect on the dispersion relation. Therefore, the non-parallel, Coriolis and streamline
curvature terms can be consistently neglected and (2.12) reduced to a fourth-order
ordinary differential equation. However, if only the non-parallel terms are neglected
(2.12) can be reduced to a sixth-order ordinary differential equation. It is known that
the critical Reynolds number for stationary vortices depends sensitively on whether
or not the Coriolis and streamline curvature terms are included. In fact, Hall (1986)
has shown that Coriolis terms become of the same order as the viscous terms on
the long-wave lower branch of the stationary-vortices neutral curve, and this may
explain the strong dependence of the stationary-vortices critical Reynolds number on
whether or not the Coriolis terms are included. However, Hall’s lower-branch analysis
also confirms that non-parallel terms are of higher order there too, justifying use of
the parallel-flow approximation for all unstable stationary vortices at high enough
Reynolds numbers (although the waves are longer near the lower branch, they are
not long enough to invalidate the parallel-flow approximation).

There is as yet no corresponding analysis for the long-wave lower branch of the
absolute-instability neutral curve, though clearly one would be desirable. Our aim in
this paper is to provide an asymptotic analysis of the short-wave upper branch of
the absolute-instability neutral curve, and use it to estimate the effect of non-parallel
terms on the absolute instability in this part of parameter space.

Lingwood (1995) has shown that in the inviscid limit, i.e. neglecting O(Re−1) terms
in (2.12), there is an upper limit to β/ρ for the existence of absolute instability. We
find that the eigenvalues for the boundary of inviscid absolute instability are

α0 = 0.3383 − 0.0583i, β0/ρ = 0.2652, ω0/ρ = −0.0698. (2.13a, b, c)

These are eigenvalues for which ∂ω/∂α =0 in the inviscid limit, for constant β and
ρ. It may be verified that this branch point is a pinch point, i.e. it represents a
coalescence between an upstream propagating wave and a downstream propagating
wave in accordance with the Briggs–Bers criterion for absolute instability, see Briggs
(1964). When 0 < β/ρ < 0.2652, the pinch point gives Im(ω/ρ) > 0, and hence there
is absolute instability in this range. Figure 1 shows a comparison between this inviscid
neutral absolute-instability result, and the absolute-instability neutral curve obtained
by solving numerically the parallel-flow sixth-order ordinary differential equations
obtained by setting ∂/∂ρ = 0 and neglecting O(Re−2) terms in (2.12). Note that when
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comparisons are made with parallel-flow results, local dimensionless variables are
used by taking ρ = 1. The numerical procedure was based on expanding quantities in
terms of Chebyshev polynomials, see Orszag (1971). The critical Reynolds number for
absolute instability was found to be Re = 507.4 (Lingwood 1997 quotes Re = 507.3).

Figure 1 suggests that the upper branch of the parallel-flow branch points asym-
ptotes towards the inviscid value (2.13b) as Re increases. Therefore, we take (2.13)
as the starting point for the asymptotic large-Reynolds-number theory for the upper
branch of the neutral curve for absolute instability.

3. Asymptotic non-parallel branch points
The method of matched asymptotic expansions has been used to obtain solutions

to (2.12) as Re → ∞, with leading-order inviscid eigenvalues given by (2.13). This
method is used because the disturbance solution has its own boundary-layer structure.
At leading order the solution is inviscid and has a finite slip velocity at the wall. When
viscosity is included, its dominant role is to enforce the non-slip boundary condition
at the wall, and this leads to the existence of a thin viscous layer at the wall. The order
of magnitude of the thickness of this layer is found as follows. Let z = εZ, where ε

represents the thickness of the layer, and the viscous-layer variable Z = O(1) in the
viscous layer. The left-hand side of (2.12a) shows that in the viscous layer w must be
O(ε) smaller than u and v (since ∂/∂z = ε−1∂/∂Z). U and V are proportional to z in
the viscous layer, and hence are of O(ε) in the viscous layer. Therefore, the dominant
inviscid terms in (2.12b, c) are the unsteady terms, and the pressure is chosen to be of
the same order. The thickness of the viscous layer is chosen so that the viscous terms
u′′ and v′′ are of the same order as the dominant inviscid terms in the viscous layer,
giving ε = Re−1/2. (The corresponding result for stationary vortices, ε = Re−1/3, is
obtained by repeating the above argument with ω = 0, leading instead to a balance
between the viscous terms and the convective terms, as first shown by Hall 1986. The
unsteady viscous layer needed here is therefore thinner than the steady viscous layer
of stationary vortices).

The presence of a viscous layer of thickness of O(Re−1/2) leads to O(Re−1/2)
corrections to the inviscid dispersion relation. Therefore, let

α = α0 + εα1 + ε2α2 + . . . , (3.1a)

β = β0 + εβ1 + ε2β2 + . . . , (3.1b)

ω = ω0 + εω1 + ε2ω2 + . . . , (3.1c)

where α0, β0 and ω0 are given by (2.13) and ε = Re−1/2.

3.1. Viscous wall layer

In the viscous layer all variables are expanded in accordance with the scaling argu-
ments presented above. Let

u(ρ, z) = U0(ρ, Z) + εU1(ρ, Z) + . . . , (3.2a)

v(ρ, z) = V0(ρ, Z) + εV1(ρ, Z) + . . . , (3.2b)

w(ρ, z) = εW0(ρ, Z) + ε2W1(ρ, Z) + . . . , (3.2c)

p(ρ, z) = P0(ρ, Z) + εP1(ρ, Z) + . . . . (3.2d)

In the viscous layer the basic flow takes the form

U = εU ′(0)Z + O(ε2), V = εV ′(0)Z + O(ε2), W = O(ε2). (3.3a, b, c)
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Substituting (3.1), (3.2) and (3.3) into (2.12) and equating the leading-order, and next-
order, coefficients of ε, gives a set of ordinary differential equations for the variables
introduced in (3.2). These equations can be reduced to

∂4W0

∂Z4
+ iω0

∂2W0

∂Z2
= 0, (3.4a)

∂P0

∂Z
= 0, (3.4b)

and

∂4W1

∂Z4
+ iω0

∂2W1

∂Z2
= i

[
ρα0Q

′
0Z − ω1 ]

∂2W0

∂Z2
, (3.5a)

∂P1

∂Z
= 0, (3.5b)

where

Q′
0 = Q′

0(ρ) =
∂Q

∂z
(ρ, 0), Q(ρ, z) = U +

β0

ρα0

V. (3.6a, b)

The solutions to (3.4) and (3.5) that satisfy the viscous wall boundary conditions

W0(ρ, 0) =
∂W0

∂Z
(ρ, 0) = W1(ρ, 0) =

∂W1

∂Z
(ρ, 0) = 0 (3.7)

and that do not grow exponentially in Z are

W0 = A0(ρ)[exp (−
√

−iω0Z) − 1 +
√

−iω0Z], (3.8a)

P0 = B0(ρ), (3.8b)

W1 = A1(ρ)[exp (−
√

−iω0Z) − 1 +
√

−iω0Z] +
A0Z

4ω0

{[(ρα0 + Q′
0Z − 2ω1)

√
−iω0

+ 5ρα0Q
′
0] exp (−

√
−iω0Z) + 2ω1

√
−iω0 − 5ρα0Q

′
0}, (3.8c)

P1 = B1(ρ), (3.8d)

where
√

denotes the root with postive real part.

3.2. Inviscid region

The appropriate expansions in the inviscid region are

u(ρ, z) = u0(ρ, z) + εu1(ρ, z) + ε2u2(ρ, z) + . . . , (3.9a)

v(ρ, z) = v0(ρ, z) + εv1(ρ, z) + ε2v2(ρ, z) + . . . , (3.9b)

w(ρ, z) = w0(ρ, z) + εw1(ρ, z) + ε2w2(ρ, z) + . . . , (3.9c)

p(ρ, z) = p0(ρ, z) + εp1(ρ, z) + ε2p2(ρ, z) + . . . . (3.9d)

Substituting (3.1) and (3.9) into (2.12) and equating coefficients of ε at successive
orders leads to ordinary differential equations for all the new variables introduced
in (3.9). After some manipulation, the leading-order equations can be reduced to the
Rayleigh equation, and the higher-order equations can be reduced to forced Rayleigh
equations:

w′′
0 −

(
Q′′

Q − c0

+ γ 2
0

)
w0 = 0, (3.10a)

w′′
1 −

(
Q′′

Q − c0

+ γ 2
0

)
w1 = f1(z), (3.10b)
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w′′
2 −

(
Q′′

Q − c0

+ γ 2
0

)
w2 = f2(z), (3.10c)

where

f1 =

{
2

(
α0α1 +

β0β1

ρ2

)
+

(
α1

α0

− β1

β0

)
U ′′

Q − c0

−
[(

α1

α0

− β1

β0

)
U +

c0β1 − c1β0

β0

]
Q′′

(Q − c0)2

}
w0, (3.11a)

γ 2
0 = α2

0 +

(
β0

ρ

)2

, c0 =
ω0

ρα0

, c1 =
ω1

ρα0

. (3.11 b, c, d)

and f2 was obtained using a symbolic manipulation package, and contains too many
terms to write out here. Note that f2 includes the Coriolis and streamline curvature
terms and the first non-parallel terms, i.e. those involving partial derivatives with
respect to ρ. It also includes the viscous terms; at this order viscous effects are no
longer confined to the wall layer, but extend over the whole flow.

The leading-order solution w0 is obtained by numerically solving (3.10a) using
the eigenvalues (2.13) for the neutral inviscid pinch point (for these eigenvalues the
critical points, where Q = c0, are arranged in the complex z-plane in such a way
that the solution path can be taken along the real z-axis). Equations (3.10b, c) can be
solved numerically, but their behaviour for small z is required in order to match to
the viscous solutions (3.8). This behaviour can be obtained by expressing the solutions
for w1 and w2 in terms of w0. For example,

w1 = w0

∫ z

0

1

w2
0

∫ t

∞
w0f1 ds dt (3.12)

satisfies (3.10b) and the outer boundary condition since f1 is proportional to w0 for
large z by (3.11a). However, instead, we extract the singular part of the integrand
and choose

w1 = w0

∫ z

0

1

w2
0

∫ t

∞
w0f1 ds − 1

(w′
0(ρ, 0)t)2

∫ 0

∞
w0f1 ds dt − w0

w′
0(ρ, 0)2z

∫ 0

∞
w0f1 dt

(3.13)
since w′′

0 (ρ, 0) = 0 by (3.10a). The behaviour for small z is then quickly found:

w1 ∼
[
2

(
α0α1 +

β0β1

ρ2

)
I1a +

(
α1

α0

− β1

β0

)
(I1b − I1c)

− c0β1 − c1β0

β0

I1d

]
w′

0(ρ, 0) + O(z2), (3.14)

where

I1a =
1

w′
0(ρ, 0)2

∫ ∞

0

w2
0 dz, I1b =

1

w′
0(ρ, 0)2

∫ ∞

0

U ′′w2
0

Q − c0

dz, (3.15a, b)

I1c =
1

w′
0(ρ, 0)2

∫ ∞

0

UQ′′w2
0

(Q − c0)2
dz, I1d =

1

w′
0(ρ, 0)2

∫ ∞

0

Q′′w2
0

(Q − c0)2
dz. (3.15c, d)

When evaluated using (2.13) these integrals take the values I1a = 1.564 + 0.263i,
I1b = −0.3827 − 0.7618i, I1c = −0.0149 − 0.8277i and I1d = 0.113 − 4.677i.

The behaviour of w2 for small z has been found by following similar steps.
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3.3. Dispersion relations

Van Dyke’s matching rule has been used on the vertical component of the disturbance
velocity to obtain relationships between B0(ρ), B1(ρ) and w′

0(ρ, 0):

H2

[
w0(ρ, εZ) + εw1(ρ, εZ) + ε2w2(ρ, εZ)

]
= H2[εW0(ρ, z/ε)+ε2W1(ρ, z/ε)], (3.16)

where Hn[·] means expand the expression in powers of ε retaining terms up to and
including O(εn). Substituting (3.8a, c), (3.14) and the corresponding expression for w2

into (3.16), and eliminating B0(ρ), B1(ρ) and w′
0(ρ, 0), leads to dispersion relations for

ω1 and ω2. The result for ω1 is

ω1 =
β1

β0

ω0 − ρα0

I1d

[
2

(
α0α1 +

β0β1

ρ2

)
I1a +

(
α1

α0

− β1

β0

)
(I1b − I1c) + (−iω0)

−1/2

]
.

(3.17)

The result for ω2 has also been obtained, but will not be written out here due to its
length. However, see the Appendix for the non-parallel part of ω2.

Before using these dispersion relations to calculate the branch points, we note that
there is a relationship between the integrals defined in (3.15) that has an important
consequence for the calculation of the non-parallel neutral curve for absolute
instability. It follows from a three-dimensional generalization of two-dimensional
results presented in appendices of Monkewitz et al. (1993). We start by writing the
Rayleigh equation (3.10a) as (Q − c0)(w

′′
0 − γ 2

0 w0) − Q′′w0 = 0, which we differentiate
with respect to α0 to give

(Q − c0)

(
∂w′′

0

∂α0

− γ 2
0

∂w0

∂α0

)
− Q′′ ∂w0

∂α0

= 2α0(Q − c0)w0 +
U ′′w0

α0

− UQ′′w0

α0(Q − c0)
+

Q′′w0

ρα0(Q − c0)

∂ω0

∂α0

, (3.18)

which is a forced Rayleigh equation for ∂w0/∂α0. Therefore, multiplying through
(3.18) by the solution of the homogeneous adjoint Rayleigh equation, w0/(Q − c0),
and integrating from 0 to ∞ gives

0 =

∫ ∞

0

2α0w
2
0 +

U ′′w2
0

α0(Q − c0)
− UQ′′w2

0

α0(Q − c0)2
+

Q′′w2
0

ρα0(Q − c0)2
∂ω0

∂α0

dz (3.19)

and hence, by (3.15),

0 = 2α0I1a +
I1b − I1c

α0

+
I1d

ρα0

∂ω0

∂α0

. (3.20)

Following a similar method, but differentiating the Rayleigh equation with respect
to β0 instead, leads to

0 =
2β0

ρ
I1a − ρ(I1b − I1c)

β0

+
I1d

α0

∂ω0

∂β0

. (3.21)

Making use of (3.20) and (3.21) in (3.17), we obtain

ω1 =
∂ω0

∂α0

α1 +

(
∂ω0

∂β0

+
ω0

β0

)
β1 − ρα0

I1d

(−iω0)
−1/2. (3.22)

The coefficient of α2 in the corresponding expression for ω2 is also ∂ω0/∂α0, see
the Appendix. The appearance of the (complex) ‘group velocity’ in these expressions
resembles the Gaster transformation, see Gaster (1962), where small changes in
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spatial growth rate were related to small changes in temporal growth rate by the group
velocity. The additional terms in (3.22) represent three-dimensional and viscous effects.

3.4. Branch points

The condition for branch points, for a given β , to the order of accuracy of the
expansions (3.1), is

0 =
∂ω

∂α
=

∂ω/∂α0

∂α/∂α0

=

(
∂ω0

∂α0

+ ε
∂ω1

∂α0

+ ε2 ∂ω2

∂α0

)(
1 + ε

∂α1

∂α0

+ ε2 ∂α2

∂α0

)−1

. (3.23)

The value of α0 is chosen so that ∂ω0/∂α0 = 0 (i.e. (2.13)), then α1 is chosen so that
∂ω1/∂α0 = 0 and α2 is chosen so that ∂ω2/∂α0 = 0 etc.

Setting the derivative of (3.22) with respect to α0 to zero, solving for α1 and
evaluating the result for (2.13) gives

α1 = −1.215 + 0.003i

ρ1/2
+ (0.3391 + 0.4295i)

β1

ρ
. (3.24)

It is not necessary to substitute (3.24) into (3.22) because the coefficient of α1 in ω1 is
zero at a branch point. Numerical evaluation of (3.22) gives

ω1 = −(0.2309 + 0.1546i)ρ1/2 − (0.3025 + 0.1580i)β1. (3.25)

Along the neutral curve for absolute instability the frequency at the pinch point is
real. Therefore, setting the imaginary part of (3.25) to zero and solving for β1, then
substituting this β1 into (3.24) and (3.25), gives the following values for the pinch
points on the neutral curve for absolute instability:

α1 = −(1.546 + 0.423i)ρ−1/2, (3.26a)

β1 = −0.9784ρ1/2, (3.26b)

ω1 = 0.0650ρ1/2. (3.26c)

The result β1 < 0 shows that the effect of viscosity along the upper branch of the
absolute-instability neutral curve is stabilizing at high enough Reynolds numbers,
in qualitative agreement with the behaviour seen for the numerical solutions of
the stability equations presented in figure 1, where the neutral curve is apparently
approaching the invisicid value from below.

3.5. Dependence of non-parallel results on choice of measurement quantity

Before presenting the results for α2, β2 and ω2, it is necessary first to discuss the
importance of specifying a measurement quantity when calculating wavenumbers
in a non-parallel flow. This is apparent from the factorization of the disturbance
in the WKB formulation (2.11) into a slowly varying eigenfunction part and a
quickly varying wavy part. Measuring spatial growth rate in an experiment (physical
or numerical) requires measuring the disturbance at two near-by values of ρ. The
measured change in amplitude will contain a contribution from Im(α), and from
the dependence of the eigenfunction on ρ. This latter term depends on the quantity
measured. For example, u �= v and so the growth rate based on measuring the radial
velocity component at some point in the flow will in general be different from the
growth rate based on measuring the azimuthal velocity component at the same point
(or at a different point, or if some integral measure had been used instead). This
property of non-parallel flows means that a variety of neutral curves can be obtained
by considering different measurement quantities, see Gaster (1974) for the calculation
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of several neutral curves for the Blasius boundary layer. There is no ‘right’ or ‘wrong’
choice of measurement quantity, one must simply specify which has been chosen.

The influence of measurement quantity extends to the real part of the wavenumber
as well. Let q̂ be some measured quantity, i.e. some function of û, v̂, ŵ and p̂, and so
by (2.11) q̂ has the form

q̂ = q(ρ, z) exp iRe

(∫
α(ρ) dρ + βθ − ωt

)
. (3.27)

Therefore, the fractional rate of change of q̂ in the radial direction is

1

q̂

∂q̂

∂ρ
=

∂ ln q̂

∂ρ
=

∂ ln q

∂ρ
+ iRe α =

iα0

ε2
+

iα1

ε
+ iα2 +

∂ ln q

∂ρ
+ O(ε). (3.28)

The appearance of α2 and the measurement term at the same order indicates that
the wavy evolution at this order is on the same length scale that the basic flow
evolves on. When there is only one evolution length scale, the separation into wavy
and non-wavy parts is meaningless. In principle, α2 could be set to zero (the choice
that would be made in an experiment), set to any other value, or absorbed into
the measurement term, e.g. by introducing a new measurement function such that
q → qe−iα2ρ . However, we shall write the effective non-parallel wavenumber, based on
q̂ , as

αq =
1

iRe

∂ ln q̂

∂ρ
= α0 + εα1 + ε2

(
α2 − i

∂ ln q

∂ρ

)
+ O(ε3). (3.29)

The continued explicit presence of α2 in (3.29) serves to emphasize the arbitrary nature
of the wavenumber at O(Re−1) in a non-parallel stability calculation, and indicates
that for some choices of measurement quantity the range of positions for the neutral
curve could be relatively large at finite values of the Reynolds number, since there
is no bound on α2. In a study of convective instability, the neutral curve (for real
frequencies) is found by solving Im(αq) = 0, which depends on the choice made for
q̂ . In a study of absolute instability, the pinch points are located by searching for
∂ω/∂αq = 0, which also depends on the choice made for q̂ .

However, for absolute instability, the potential of there being different neutral
curves depending on choice of measurement quantity is problematic. For example, if
one choice of disturbance measurement is found to grow in time, but another decays
in time, then what happens to the disturbance? If it distorts to accommodate the
simultaneous growth and decay of its different characteristics, then its eigenfunction
would be changing shape, and the disturbance would no longer be an eigensolution,
thus violating the assumption upon which the calculation was based.

The resolution of this potential paradox lies in the manipulations used to derive
(3.22) from (3.17), which when applied to the expression for ω2 show that the
coefficient of α2, and therefore of ∂ ln q/∂ρ too, is ∂ω0/∂α0, see the Appendix. The
determination of the position of the neutral curve in the (Re, β)-plane is therefore
independent of the choice of measurement quantity since the coefficient of terms that
involve the measurement quantity is zero at a branch point. This conclusion is general
and does not only apply to the rotating disk: the neutral curve for absolute instability
is unique and does not depend on the choice of measurement quantity, but for waves
with non-zero group veocity there will be a range of neutral curves depending on the
choice of measurement quantity.
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Following the same steps that were used to calculate (3.26), we obtain

αq2 =

(
−7.11 + 4.19i − i

∂ ln q

∂ρ

)
1

ρ
, (3.30a)

β2 = −4.37, (3.30b)

ω2 = 0.694, (3.30c)

where αq2 is the O(ε2) part of αq . Note that while the evaluation of (3.26) involved the
evaluation of integrals of w0 given in (3.15), (3.30) required the evaluation of integrals
involving w0 and w1. The w1 solution was defined in terms of double integrals in (3.13)
(to facilitate matching with the viscous solution), but for the numerical evaluation of
integrals involving w1, numerical solutions of (3.10b) were used instead.

In order to determine the contribution made by the non-parallel terms, the
calculations in this section have been repeated for the parallel version of the stability
equations, i.e. (2.12) with all derivatives with respect to ρ set to zero. The inclusion
of α2 is now essential, and of course the term based on the measurement quantity in
(3.29) is now zero. The result is

α2 = −(6.26 − 4.10i)ρ−1, (3.31a)

β2 = −5.56, (3.31b)

ω2 = 1.15. (3.31c)

By comparing (3.30b) with (3.31b), it is clear that the neutral curve for absolute
instability predicted by the non-parallel theory lies above that predicted by the parallel
theory, and that therefore non-parallel terms are destabilizing, making up about 30%
of the O(Re−1) contribution to the absolute-instability neutral curve.

4. Comparison between asymptotic and numerical solutions
The predicited destabilization produced by the non-parallel terms represents the

leading-order non-parallel effect as Re → ∞. The ability of an asymptotic theory to
make accurate quantitative predictions at a given finite Reynolds number depends
on the convergence of the series at the given Reynolds number. Many more than the
three terms used in (3.1) would be needed before the radius of convergence of the
series could be reliably estimated. Instead, the convergence of the asymptotic solution
has been tested by comparing it with numerical solutions of the parallelized stability
equations. Working in terms of local variables (i.e. taking ρ = 1), (2.13b), (3.26b),
(3.30b) and (3.31b) give

β = 0.2652 − 0.9784Re−1/2 − 4.37Re−1 + O(Re−3/2), (4.1a)

βp = 0.2652 − 0.9784Re−1/2 − 5.56Re−1 + O(Re−3/2), (4.1b)

for the upper branch of the neutral curve for absolute instability, where the subscript
p denotes the parallel-flow result. The asymptotic results (4.1) are shown in figure 2(a)
together with the numerical results from figure 1.

What is most striking is how poorly the asymptotic results agree with the numerical
results at these Reynolds numbers. It would be expected that the numerical results and
asymptotic results would come into closer agreement at higher Reynolds numbers,
but figure 2(b) shows that this is not the case. Furthermore, the upper branch of
the neutral curve obtained from the numerical solution does not even approach the
inviscid result (at least for Re < 20 000), but decays, presumably as some inverse
power of Re. As they stand, these results are open to two interpretations: either the
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Figure 2. (a) Solid line is the neutral curve for absolute instability calculated using the
sixth-order parallel-flow approximation; top dashed line is the neutral inviscid value (2.13b)
for absolute instability, middle dashed line is the non-parallel result (4.1a), lowest dashed line
is the parallel result (4.1b). (b) Same curves as in (a), but plotted over a greater Reynolds
number range.

numerical solution has become unreliable at these large-Reynolds-numbers, or the
family of branch points discovered by Lingwood (1995) is not the viscous continuation
of the inviscid branch points, but is fundamentally of a viscous long-wave character.

This question has been resolved by evaluating (4.1b), and the corresponding
asymptotic results for α and ω for the branch points, at Re = 20 000, and using
these values as initial guesses in the numerical solution procedure for locating branch
points with real frequencies. The numerical solution converged quickly to find a
second family of branch points extremely close to the asymptotic branch points. This
second family of numerically determined branch points is shown in figure 3. The close
agreement between the asymptotic theory for the branch points, and the numerical
solutions confirms that the numerical solutions are reliable at these Reynolds numbers.

In figure 3 there are two points where the curve for the new family of branch points
(those that correspond to the asymptotic theory) intersect the curve of Lingwood’s
branch points. We shall refer below to the intersection at higher Reynolds number
as the ‘right-intersection’, and to the other intersection point as the ‘left-intersection’.
At these points, branch points occur at the same β , and each with Im(ω) = 0, but
with different Re(ω) and α. In fact, the branch points connect three spatial branches
(families of roots of the dispersion relation in the complex α-plane generated by
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Figure 3. Same neutral curves for absolute instability as figure 2, but with an additional family
of numerically computed branch points with real frequencies for the sixth-order parallel-flow
approximation; (b) is a detail of (a).

horizontal paths in the ω-plane). One spatial branch lies in the lower half of the
complex α-plane for large positive Im(ω), and so is an upstream propagating wave,
the other two lie in the upper half of the complex α-plane for large positive Im(ω),
and so are downstream propagating waves.

At any given Reynolds number, at most only one of the two families of branch
points can give pinch points. Examples of spatial branches close to branch points
are shown in figure 4. Figure 4(a) is on the neutral curve for the new family of
branch points just to the right of the right-intersection point. At this point the new
branch point is a pinch point, and Lingwood’s branch point is not. Moving to a
lower Reynolds number, in between the two intersection points and to a point on
Lingwood’s family of branch points, figure 4(b) shows that here it is Lingwood’s
branch point that is the pinch point instead. Figure 4(c) is on the new family of
branch points and to the left of the left-intersection point. Here the branch point is
non-pinching and is between two downstream propagating waves.

Thus, all three branches can connect among each other in different combinations
and in different orders in this region of parameter space. In fact, this behaviour is
controlled by a super branch point where all three branches connect simultaneously.
The super branch point is determined by the condition

∂ω

∂α
=

∂2ω

∂α2
= 0 (4.2)
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Figure 4. Spatial branches, with arrows indicating the direction of increasing Re(ω). In
each graph, the spatial branch corresponding to the lowest Im(ω) is represented by a
dashed line, and since these are contours below those at the pinch point, they connect
the upper-half-plane discreet spectrum to the lower-half-plane discreet spectrum and lie
in the valleys of the saddle points. The parameter values used to produce these graphs
are (a) Re = 3000, β =0.2471, Im(ω) = 0.00017, 0.000003, −0.000164, with branch points at
(α, ω) = (0.1104+0.0175i, −0.06420−0.000164i) and (0.3060−0.0359i, −0.06810+0.000003i);
(b) Re = 2600, β = 0.2467, Im(ω) = 0.0003, 0.000155, 0.000006, with branch points at
(α, ω) = (0.1339+0.0203i, −0.06569+0.000155i) and (0.3035−0.0208i, −0.06814+0.000006i);
(c) Re = 1500, β = 0.265, Im(ω) = 0.0005, 0.000008, −0.000482, −0.001, with branch points at
(α, ω) = (0.1991−0.0419i, −0.07644−0.000482i) and (0.3537+0.0981i, −0.07335+0.000008i);
(d) Re = 1994.9, β = 0.2348, Im(ω) = 0.0019, 0.00186, 0.0018.

which we find to occur for R = 1995, α = 0.2385 + 0.0197i, β = 0.2348 and ω =
− 0.06501 + 0.00186i. Figure 4(d) shows the arrangement of spatial branches close to
the super branch point. Note that the usual large-time steepest-descent approximation
to the solution of the corresponding initial-value problem (formulated using Fourier-
Laplace transforms) breaks down in the case of the super-branch point. This is because
these results have the second derivative evaluated at the saddle point appearing in the
denominator, and this is zero by (4.2). Nonetheless, a uniformly asymptotic expansion
for this case of coalescing saddle points can be constructed in terms of Airy functions,
as shown by Chester, Friedman & Ursell (1957).

Figure 5 shows where the super branch point lies in relation to the neutral curves for
the two families of branch points, and indicates where each family of branch points
produce pinch points. Lingwood’s branch points are pinch points near the critical
Reynolds number for absolute instability, and along the lower branch of the neutral
curve for absolute instability, but only along the upper branch up to Re = 2790.
For Re > 2790 the new family of branch points form the pinch points, and these
approach the inviscid results, as the Reynolds number increases, in close agreement
with the asymptotic theory developed in § 3. Lingwood’s branch points are therefore
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Figure 5. Solid lines are the neutral curves for absolute instability, dashed lines are
non-pinching branch points with real frequencies, both calculated using the sixth-order
parallel-flow approximation. The black dot indicates the position of the super branch point
defined by (4.2).

not directly connected to the absolute instability in the inviscid limit, but are related
to a long-wave viscous mechanism.

5. Conclusions
A large-Reynolds-number asymptotic theory has been developed to investigate the

effect of non-parallel terms on the absolute instability discovered by Lingwood (1995)
in the rotating-disk boundary layer. The theory was based on the wavenumber for
neutral inviscid absolute instability. It was found that the non-parallel terms have a
destabilizing effect on the upper branch of the neutral curve for absolute instability.

Another finding is that although the position of the neutral curve for convective
instability depends on the choice of measurement quantity, it has been shown that for
absolute instability there is no dependence on the choice of measurement quantity.
This is because the term in the dispersion relation that arises from the measurement
quantity is multiplied by the complex group velocity, which is zero at the pinch point
that produces the absolute instability.

However, a comparison between the asymptotic and numerical solutions for the
neutral curve for absolute instability reveals surprisingly poor quantitative agreement.
Furthermore, the attempt to improve the agreement by extending the numerical
solution to higher Reynolds numbers actually reveals a divergence between the
numerical viscous solution and the inviscid solution, which persists, and becomes
increasingly exagerated, right up to Re = 20 000, the highest value computed. There
might have been concerns that the numerical solution’s divergence from the inviscid
solution was evidence that it was becoming inaccurate at these large Reynolds
numbers. However, taking values from the asymptotic theory as first guesses for
branch points in the numerical solution procedure, led to the discovery of a second
family of branch points in good agreement with the asymptotic theory. The relation
between the two families of branch points, and the regimes where each represent
pinch points has been determined. A super branch point has been found where three
spatial branches connect simultaneously. Lingwood’s branch points are pinch points
along the lower branch of the neutral curve for absolute instability, around the critical
Reynolds number for absolute instability, but only up to Re = 2790 on the upper
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branch. The new family of branch points form pinch points for Re > 2790, and it is
this second family that connects to the inviscid results.

This discovery of the second family of pinch points does not have direct practical
consequences, because the flow is always likely to be turbulent at the Reynolds
numbers where the new family becomes important. Its significance lies in clarifying
the relationship between the viscous and inviscid theories of absolute instability on
the rotating disk. The stationary vortices in the rotating-disk boundary layer were
discovered first in the inviscid theory, and later found in the viscous theory. The
simple connection known to exist between the viscous and inviscid stationary vortices
allows the inviscid theory to be used as a starting point for nonlinear investigations.
It also determines the order of magnitude of non-parallel effects since it fixes the
ratio between vortex wavelength and basic flow evolution, and so helps justify use of
the parallel-flow approximation in studies of stationary vortices.

When Lingwood (1995) found absolute instability in both the viscous and inviscid
theories, she assumed that a correspondingly simple relation existed between the two,
and argued that, therefore, non-parallel effects would be as small for the absolute
instability as they are for stationary vortices. However, the results presented here show
that this is not the case. Instead, Lingwood’s family of branch points is controlled by
a long-wave viscous mechanism. This means that non-parallel effects will be larger
by some power of the Reynolds number than previously assumed. It also shows that
the inviscid theory with order unity eigenvalues is not an appropriate starting point
for modelling absolute instability in the rotating-disk boundary layer.

A complete theoretical understanding of this local absolute instability lies in the
viscous long-wave limit. Such a theory can be developed from the inviscid long-wave
theory of Healey (2004), which includes the fundamental instability mechanism itself,
and shows that in this limit there are several families of branch points, only one of
which is pinching, with two downstream propagating modes and a single upstream
propagating mode, thus reproducing all the main characteristics of the dispersion
relation discovered here at finite Reynolds numbers. The viscous long-wave theory
for the absolute instability will inherit these characteristics of the inviscid long-wave
theory, and the addition of viscous terms will allow the Reynolds number scalings,
and asymptotic disturbance structure, of the lower branch of the neutral curve to be
determined as well.

Finally, we point out that the destabilizing effect of non-parallel terms on the local
absolute-instability characteristics found here does not contradict the stabilizing effect
of spatial inhomogeneity found in the direct numerical simulations of disturbances
in the rotating-disk boundary layer by Davies & Carpenter (2003). As described in
the introduction, the global behaviour can be stable even when there is local absolute
instability. The linear global behaviour is nonetheless determined by the local stability
characteristics, and the methods presented here for carrying out non-parallel local
calculations could in principle be used to develop linear and nonlinear global-mode
theories for the rotating-disk boundary layer.

Appendix. The non-parallel terms in the asymptotic theory
The non-parallel terms enter the expansions at O(Re−1) = O(ε2) and so modify the

α2, β2 and ω2 terms in (3.1). The Coriolis and streamline curvature terms also enter
at this order, and the viscous terms enter in the main part of the boundary layer.
Consequently, the expressions for the dispersion relation, and hence branch points,
at this order contain very many terms, and so will not be written out here fully.
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Nonetheless, the terms of most interest to us are the non-parallel terms, and these
can be extracted from the result for ω2:
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and ω2p represents all the terms that would be present in an analysis of the parallel-
flow equations, α2n and β2n are the non-parallel corrections to the wavenumbers and
q is some measurement quantity as discussed in § 3.5. The derivative ∂ω2/∂α0 is then
calculated and set to zero to solve for α2 at the pinch point, then setting the imaginary
part of ω2 to zero and solving for β2n leads to the non-parallel contribution to the
pinch point giving the upper branch of the neutral curve of absolute instability.
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